Aboueid, S., Liu, R. H., Desta, B. N., Chaurasia, A., et al. (2019) ‘The Use of Artificially Intelligent Self-Diagnosing Digital Platforms by the General Public: Scoping Review’, JMIR Medical Informatics, 7(2), e13445. https://doi.org/10.2196/13445
Alepis, E. and Virvou, M. (2011) ‘Automatic generation of emotions in tutoring agents for affective e-learning in medical education’, Expert Systems with Applications, 38(8), pp. 9840–9847. https://doi.org/10.1016/j.eswa.2011.02.021
Berner, E. S. and McGowan, J. J. (2010) ‘Use of diagnostic decision support systems in medical education’, Methods of Information in Medicine, 49(4), pp. 412–417. https://doi.org/10.3414/ME9309
Bhhatarai, B., Walters, W., Hop, C., Lanza, G., et al. (2019) ‘Opportunities and challenges using artificial intelligence in ADME/Tox’, Nature Materials, 18(5), pp. 418–422. https://doi.org/10.1038/s41563-019-0332-5
Birbara, N. S., Sammut, C. and Pather, N. (2019) ‘Virtual Reality in Anatomy: A Pilot Study Evaluating Different Delivery Modalities’, Anatomical Sciences Education. https://doi.org/10.1002/ase.1921
Briganti, G. and Le Moine, O. (2020) ‘Artificial Intelligence in Medicine: Today and Tomorrow’, Frontiers in Medicine, 7, p. 27. https://doi.org/10.3389/fmed.2020.00027
Car, J., Sheikh, A., Wicks, P. and Williams, M. S. (2019) ‘Beyond the hype of big data and artificial intelligence: building foundations for knowledge and wisdom’, BMC Medicine, 17(1), p. 143. https://doi.org/10.1186/s12916-019-1382-x
Cath, C. (2018) ‘Governing artificial intelligence: ethical, legal and technical opportunities and challenges’, Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 376(2133). https://doi.org/10.1098/rsta.2018.0080
Chan, K. S. and Zary, N. (2019) ‘Applications and Challenges of Implementing Artificial Intelligence in Medical Education: Integrative Review’, JMIR Medical Education, 5(1), e13930. https://doi.org/10.2196/13930
Chan, L. K. and Pawlina, W. (2020) ‘Artificial Intelligence or Natural Stupidity? Deep Learning or Superficial Teaching?’ Anatomical Sciences Education, 13(1), pp. 5–7. https://doi.org/10.1002/ase.1936
Du‐Harpur, X., Watt, F. M., Luscombe, N. M. and Lynch, M. D. (2020) ‘What is AI? Applications of artificial intelligence to dermatology’, British Journal of Dermatology. https://doi.org/10.1111/bjd.18880
Duong, M. T., Rauschecker, A. M., Rudie, J. D., Chen, P.-H., et al. (2019) ‘Artificial intelligence for precision education in radiology’, The British Journal of Radiology, 92(1103), p. 20190389. https://doi.org/10.1259/bjr.20190389
Fogel, A. L. and Kvedar, J. C. (2018) ‘Artificial intelligence powers digital medicine’, NPJ Digital Medicine, 1, p. 5. https://doi.org/10.1038/s41746-017-0012-2
Gallix, B. and Chong, J. (2019) ‘Artificial intelligence in radiology: who's afraid of the big bad wolf?’ European Radiology, 29(4), pp. 1637–1639. https://doi.org/10.1007/s00330-018-5995-9
Garg, T. (2020) ‘Artificial Intelligence in Medical Education’, The American Journal of Medicine, 133(2), e68. https://doi.org/10.1016/j.amjmed.2019.08.017
Han, E.-R., Yeo, S., Kim, M.-J., Lee, Y.-H., et al. (2019) ‘Medical education trends for future physicians in the era of advanced technology and artificial intelligence: an integrative review’, BMC Medical Education, 19(1), p. 460. https://doi.org/10.1186/s12909-019-1891-5
Hardy, M. and Harvey, H. (2020) ‘Artificial intelligence in diagnostic imaging: impact on the radiography profession’, The British Journal of Radiology, 93(1108), p. 20190840. https://doi.org/10.1259/bjr.20190840
Kolachalama, V. B. and Garg, P. S. (2018) ‘Machine learning and medical education’, NPJ Digital Medicine, 1, p. 54. https://doi.org/10.1038/s41746-018-0061-1
Kowalewski, K.-F., Garrow, C. R., Schmidt, M. W., Benner, L., et al. (2019) ‘Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying’, Surgical Endoscopy, 33(11), pp. 3732–3740. https://doi.org/10.1007/s00464-019-06667-4
Kurowecki, D., Lee, S. Y., Monteiro, S. and Finlay, K. (2020) ‘Resident Physicians' Perceptions of Diagnostic Radiology and the Declining Interest in the Specialty’, Academic Radiology. https://doi.org/10.1016/j.acra.2020.01.016
Kyaw, B. M., Saxena, N., Posadzki, P., Vseteckova, J., et al. (2019) ‘Virtual Reality for Health Professions Education: Systematic Review and Meta-Analysis by the Digital Health Education Collaboration’, Journal of Medical Internet Research, 21(1), e12959. https://doi.org/10.2196/12959
Liaw, S. Y., Ooi, S. W., Rusli, K. D. B., Lau, T. C., et al. (2020) ‘Nurse-Physician Communication Team Training in Virtual Reality Versus Live Simulations: Randomized Controlled Trial on Team Communication and Teamwork Attitudes’, Journal of Medical Internet Research, 22(4), e17279. https://doi.org/10.2196/17279
Lynn, L. A. (2019) ‘Artificial intelligence systems for complex decision-making in acute care medicine: a review’, Patient Safety in Surgery, 13, p. 6. https://doi.org/10.1186/s13037-019-0188-2
Masters, K. (2019) ‘Artificial intelligence in medical education’, Medical Teacher, 41(9), pp. 976–980. https://doi.org/10.1080/0142159X.2019.1595557
Paranjape, K., Schinkel, M. and Nanayakkara, P. (2020) ‘Short Keynote Paper: Mainstreaming Personalized Healthcare-Transforming Healthcare through new era of Artificial Intelligence’, IEEE Journal of Biomedical and Health Informatics. https://doi.org/10.1109/JBHI.2020.2970807
Paranjape, K., Schinkel, M., Nannan Panday, R., Car, J. et al. (2019) ‘Introducing Artificial Intelligence Training in Medical Education’, JMIR Medical Education, 5(2), e16048. https://doi.org/10.2196/16048
Paton, C. and Kobayashi, S. (2019) ‘An Open Science Approach to Artificial Intelligence in Healthcare’, Yearbook of Medical Informatics, 28(1), pp. 47–51. https://doi.org/10.1055/s-0039-1677898
Pinto Dos Santos, D., Giese, D., Brodehl, S., Chon, S. H., et al. (2019) ‘Medical students' attitude towards artificial intelligence: a multicentre survey’, European Radiology, 29(4), pp. 1640–1646. https://doi.org/10.1007/s00330-018-5601-1
Sanal, M. G., Paul, K., Kumar, S. and Ganguly, N. K. (2019) ‘Artificial Intelligence and Deep Learning: The Future of Medicine and Medical Practice’, The Journal of the Association of Physicians of India, 67(4), pp. 71–73.
Sheikh, A. Y. and Fann, J. I. (2019) ‘Artificial Intelligence: Can Information be Transformed into Intelligence in Surgical Education?’ Thoracic Surgery Clinics, 29(3), pp. 339–350. https://doi.org/10.1016/j.thorsurg.2019.03.011
Sit, C., Srinivasan, R., Amlani, A., Muthuswamy, K., et al. (2020) ‘Attitudes and perceptions of UK medical students towards artificial intelligence and radiology: a multicentre survey’, Insights into Imaging, 11(1), p. 14. https://doi.org/10.1186/s13244-019-0830-7
Sorin, V., Barash, Y., Konen, E. and Klang, E. (2020) ‘Creating Artificial Images for Radiology Applications Using Generative Adversarial Networks (GANs) - A Systematic Review’, Academic Radiology. https://doi.org/10.1016/j.acra.2019.12.024
van der Niet, A. G. and Bleakley, A. (2020) ‘Where medical education meets artificial intelligence: 'Does technology care?'’, Medical Education. https://doi.org/10.1111/medu.14131
Wartman, S. A. and Combs, C. D. (2019) ‘Reimagining Medical Education in the Age of AI’, AMA Journal of Ethics, 21(2), E146-152. https://doi.org/10.1001/amajethics.2019.146
Waymel, Q., Badr, S., Demondion, X., Cotten, A., et al. (2019) ‘Impact of the rise of artificial intelligence in radiology: What do radiologists think?’ Diagnostic and Interventional Imaging, 100(6), pp. 327–336. https://doi.org/10.1016/j.diii.2019.03.015
Winkler-Schwartz, A., Bissonnette, V., Mirchi, N., Ponnudurai, N. et al. (2019) ‘Artificial Intelligence in Medical Education: Best Practices Using Machine Learning to Assess Surgical Expertise in Virtual Reality Simulation’, Journal of Surgical Education, 76(6), pp. 1681–1690. https://doi.org/10.1016/j.jsurg.2019.05.015